If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18q^2+84q+98=0
a = 18; b = 84; c = +98;
Δ = b2-4ac
Δ = 842-4·18·98
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$q=\frac{-b}{2a}=\frac{-84}{36}=-2+1/3$
| x/5+1/3=4/3 | | 4.3t-2.1t-2.3=8.7 | | -3(2y-1)+6=-15 | | 26=8n-10-2n | | 24y^2-78y-72=0 | | 9h+4=67h= | | 25x=1040 | | 15+6m=45 | | 58j=-28-4j^2 | | 2(2b-5b)-9=-3 | | 2/3x-1=9-1/6x= | | 12=3f | | 40k^2-392k-80=0 | | x+12=35-(x+12) | | 1+5w+5-7w=22 | | 9=1/3m+15 | | 180=3x-82+166 | | 6h^2+68h+22=0 | | 5x+2+10x-3+7x-11+8x-19+13x-31=540 | | 1-8n=-7n | | 3x+47/5=28 | | 10(w+1)=90 | | 54+8p=6(p-4) | | 32m^2-80m+50=0 | | -1/8z+3=-5 | | 2(5x−5)= 40 | | x=π | | −0,2a+12=−19 | | 20f^2-110f+90=0 | | 45/360=x/2π3 | | 54+8p=6(2p-21) | | 3(2x-6)+2x=x-2(3x-4) |